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Regularised Classification

. beginning with scattered data in high dimensions

D =
{
(x j , y j) = (x j

1, · · · , x
j
d ; y

j)
}N

j=1
x j ∈ [0,1]d , y j ∈ {−1,1}

. re-construct underlying function f (x) such that
I sign(f (x j)) = y j

I f provides a reasonable prediction when evaluated at other x
. we get with

I suitable loss/cost function L to minimise misclassification count
I Tikhonov-regularisation (to have well-posed problem)

R(f ) −→
f∈V

min !

with

R(f ) =
1
N

N∑

j=1

L(f (x j), y j) + λ‖Sf‖2
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Loss Functions
. negative log likelihood

1
N

N∑

j=1

LL(y j ,g(x j)) =
1
N

N∑

j=1

log
(

1 + exp
(
−y jg(x j)

))

. huberised hinge loss (h is a parameter to be chosen)

1
N

N∑

j=1

LH(y j ,g(x j)); LH(y , t) =





0 if yt > 1 + h
(1+h−yt)2

4h if |1− yt | ≤ h
1− yt if yt < 1− h
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A Sum of Separable Functions

. we employ a sum of separable functions

f (x) =
r∑

l=1

d∏

i=1

f l
i (xi)

. costs rdM if each (one-dimensional) f l
i costs M

. good approximation with small r defeats curse of dimensionality

. represent f l
i ∈ Vi by its coefficients c l

i for basis {φk}Mk=1

f l
i =

M∑

k=1

c l
i (k)φk

. very closely related to low rank decomposition for tensors

. therefore in two dimensions very closely related to SVD

. Regression in [Beylkin.Garcke.Mohlenkamp:2009]
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What is one-D f l
i ?

. we represent f l
i ∈ Vi by its coefficients c l

i

f l
i =

M∑

k=1

c l
i (k)φk

. use hat functions (piecewise linear), shown level 3, i.e. M = 23 + 1

0 : k = 0,1

1 : k = 2

2 : k = 3,4

3 : k = 5,6,7,8
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Example Data Set

l \ i 1 2

1

2

3

4

r = 4, multi-scale basis with level 5, M = 25 + 1
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Learning Theory Context

. framework of Sobolev spaces for learning theory

. bounds on its properties for learning e.g. in [Cucker.Smale:2001]

. discrete approximation takes place (by sums of separable functions)

. approximation theory bounds for convergence rates in statistical
learning theory context in [Barron.Cohen.Dahmen.Devore:2008]

. other approaches can be formulated as sum of separable functions
I with increasing rank r and resolution M one can approximate a function

from a Sobolev space of certain smoothness arbitrarily close
I convergence order for related approaches grows exponentially in d

. currently no characterisation of functions with low separation rank
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Minimisation

. primary goal: investigate performance of function representation

. non-quadratic loss function need non-linear solution process

. essentially two strategies in this setting
I minimise in whole parameter space (empirically does not work)
I alternatingly minimise a subset of the unknowns at each step

. need non-linear minimisation for both, e.g.
I BFGS Quasi-Newton
I non-linear CG
I trust-region Newton

. can hit local minima in any case
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Alternating Minimisation
. loop over the dimensions i = 1, . . . ,d

I fix the components in all directions but i

e.g. i = 1 : f (x j) =
r∑

l=1

f l
1(x

j
1)

d∏

i=2

f l
i (x

j
i ) =

r∑

l=1

f l
1(x

j
1)p

l
j

I improve f by modifying the components in one direction i
. LL in one dimension

1
N

N∑

j=1

log

(
1 + exp

(
−yj

r∑

l=1

slpl
j f

l
1(x

j
1)

))

I O(rMN) to compute loss function (& gradient)
. two variants for regularisation

I ∇dD: use ‖∇f (x)‖2 to regularise
I inner iteration with complexity O((rMN + r 2M2)S + d2r 2M2)

I ∇f l
i : regularise each f l

1(x) with ‖∇(f l
1(x))‖2

I inner iteration with complexity O((rMN + r 2M2)S)
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Total Cost

. in addition to the inner solver we have an outer iteration
I main cost is update of

pl
j =

d∏

i=2

f l
i (x

j
i ) , j = 1, . . . ,N, l = 1, . . . , r

I one update can be done in O(rMN)
I therefore cost for one iteration is O(drMN)

. with K the number of outer iterations we get complexity

I O(Kd [(r2M2 + rMN)S + d2r2M2]) for ∇dD regularisation
I O(Kd [(rMN + r2M2)S]) for ∇f l

i regularisation

. again complexity linear in N

. linear in d for ∇f l
i regularisation
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Ranks for Spiral Data Set Example

r = 4, multi-scale basis level Ml = 5
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Empirical Comparison of Different Variants

data set LL Reg.∇f l
i LH Reg.∇f l

i LL Reg.∇dD LH Reg.∇dD
CIRCLE 2.00 2.10 1.95 2.30
SPIRALS 0.90 1.10 0.20 0.75
TWONORM 3.40 3.85 5.50 5.90
THREENORM 18.95 19.10 14.40 15.40
RINGNORM 4.80 4.90 4.70 5.30
CANCER 2.94 2.92 2.92 2.94
LIVER 25.71 25.71 30.56 30.56
CREDIT 22.77 24.25 26.87 26.73
IONOSPHERE 8.57 8.57 8.57 8.57
DIABETIS 22.08 23.23 22.72 23.38

. repeat procedure from benchmark study, 100 runs for each data set

. LL (here) outperforms LH

. “dirty” regularisation ∇f l
i better for real data sets

. ∇dD better for synthetic data
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Tests on Classification Datasets (17 Algorithms)

data set LL Reg.∇f l
i LH Reg.∇f l

i LL Reg.∇dD LH Reg.∇dD
CIRCLE 1 1 1 1
SPIRALS 3 3 2 3
TWONORM 5 5 10 11
THREENORM 8 9 2 2
RINGNORM 2 2 2 2
CANCER 4 3 3 4
LIVER 1 1 6 6
CREDIT 1 10 13 12
IONOSPHERE 4 4 4 4
DIABETIS 1 5 5 6

. position in comparison to benchmark study with 17 algorithms

. for eight of the data sets in the top three

. for six data sets at least one version achieved better results than svm

. not more than 7 ranks used, mostly less
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Conclusion

. competetive results for classification with sums of sep. functions

. often surprisingly low ranks to describe classifier

. computational cost can be as low as O(Kd [(rMN + r2M2)S])

. there are variations and possible extensions e.g.
I non-negative functions for better interpretability in case of LL
I multi-class loss functions for hinge loss or penalized likelihood estimation

using vector-valued functions
I different one-dimensional spaces for different attributes and ranks

. more sophisticated minimisation strategies needed
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